Discovering and visualizing tactics in table tennis games based on subgroup discovery
In Machine learning and data mining for sports analytics - 9th international workshop, MLSA 2022
Abstract
We report on preliminary results to automatically identify efficient tactics of elite players in table tennis games. We define such tactics as subgroups of winning strokes which table tennis experts sought to obtain to train players and adapt their strategy during games. We first report on the creation of such subgroups and their ranking by weighted relative accuracy measure (WRAcc). We then report on representation of the subgroups using visualizations that enabled our expert to provide rapid feedback and hence provided us with guidance towards further improvements of our discoveries