Yazid Attabi

Cepstral and long-term features for emotion recognition

Abstract

In this paper, we describe systems that were developed for the Open Performance Sub-Challenge of the INTERSPEECH 2009 Emotion Challenge. We participate to both two-class and five-class emotion detection. For the two-class problem, the best performance is obtained by logistic regression fusion of three systems. Theses systems use short- and long-term speech features. This fusion achieved an absolute improvement of 2,6% on the unweighted recall value compared with [6]. For the five-class problem, we submitted two individual systems: cepstral GMM vs. long-term GMM-UBM. The best result comes from a cepstral GMM and produced an absolute improvement of 3,5% compared to [6].

Continue reading