Abstract
Dans cet article, nous proposons une méthode automatique et rapide pour segmenter les hyper-intensités de la matière blanche (WMH) dans des images IRM cérébrales 3D, en utilisant un réseau de neurones entièrement convolutif (FCN) et du transfert d’apprentissage. Ce FCN est le réseau neuronal du Visual Geometry Group (VGG) pré-entraîné sur la base ImageNet pour la classification des images naturelles, et affiné avec l’ensemble des données d’entraînement du concours MICCAI WMH. Nous considérons trois images pour chaque coupe du volume à segmenter, provenant des acquisitions en T1, en FLAIR, et le résultat d’un opérateur morphologique appliqué sur le FLAIR, le top-hat, qui met en évidence les petites structures de forte intensité. Ces trois images 2D sont assemblées pour former une image 2D-3 canaux interprétée comme une image en couleurs, ensuite passée au FCN pour obtenir la segmentation 2D de la coupe correspondante. Nous traitons ainsi toutes les coupes pour former la segmentation de sortie 3D. Avec une telle technique, la segmentation de WMH sur un volume cérébral 3D prend environ 10 secondes, pré-traitement compris. Notre technique a été classée 6e sur 20 participants au concours MICCAI WMH.