Yongchao Xu

Local intensity order transformation for robust curvilinear object segmentation

By Tianyi Shi, Nicolas Boutry, Yongchao Xu, Thierry Géraud

2022-03-22

In IEEE Transactions on Image Processing

Abstract

Segmentation of curvilinear structures is important in many applications, such as retinal blood vessel segmentation for early detection of vessel diseases and pavement crack segmentation for road condition evaluation and maintenance. Currently, deep learning-based methods have achieved impressive performance on these tasks. Yet, most of them mainly focus on finding powerful deep architectures but ignore capturing the inherent curvilinear structure feature (e.g., the curvilinear structure is darker than the context) for a more robust representation. In consequence, the performance usually drops a lot on cross-datasets, which poses great challenges in practice. In this paper, we aim to improve the generalizability by introducing a novel local intensity order transformation (LIOT). Specifically, we transfer a gray-scale image into a contrast- invariant four-channel image based on the intensity order between each pixel and its nearby pixels along with the four (horizontal and vertical) directions. This results in a representation that preserves the inherent characteristic of the curvilinear structure while being robust to contrast changes. Cross-dataset evaluation on three retinal blood vessel segmentation datasets demonstrates that LIOT improves the generalizability of some state-of-the-art methods. Additionally, the cross-dataset evaluation between retinal blood vessel segmentation and pavement crack segmentation shows that LIOT is able to preserve the inherent characteristic of curvilinear structure with large appearance gaps. An implementation of the proposed method is available at https://github.com/TY-Shi/LIOT.

Continue reading

Benchmark on automatic 6-month-old infant brain segmentation algorithms: The iSeg-2017 challenge

Abstract

Accurate segmentation of infant brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is an indispensable foundation for early studying of brain growth patterns and morphological changes in neurodevelopmental disorders. Nevertheless, in the isointense phase (approximately 6-9 months of age), due to inherent myelination and maturation process, WM and GM exhibit similar levels of intensity in both T1-weighted (T1w) and T2-weighted (T2w) MR images, making tissue segmentation very challenging. Despite many efforts were devoted to brain segmentation, only few studies have focused on the segmentation of 6-month infant brain images. With the idea of boosting methodological development in the community, iSeg-2017 challenge (http://iseg2017.web.unc.edu) provides a set of 6-month infant subjects with manual labels for training and testing the participating methods. Among the 21 automatic segmentation methods participating in iSeg-2017, we review the 8 top-ranked teams, in terms of Dice ratio, modified Hausdorff distance and average surface distance, and introduce their pipelines, implementations, as well as source codes. We further discuss limitations and possible future directions. We hope the dataset in iSeg-2017 and this review article could provide insights into methodological development for the community.

Continue reading

Standardized assessment of automatic segmentation of white matter hyperintensities: Results of the WMH segmentation challenge

Abstract

Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin is of key importance in many neurological research studies. Currently, measurements are often still obtained from manual segmentations on brain MR images, which is a laborious procedure. Automatic WMH segmentation methods exist, but a standardized comparison of the performance of such methods is lacking. We organized a scientific challenge, in which developers could evaluate their method on a standardized multi-center/-scanner image dataset, giving an objective comparison: the WMH Segmentation Challenge (https://wmh.isi.uu.nl/). Sixty T1+FLAIR images from three MR scanners were released with manual WMH segmentations for training. A test set of 110 images from five MR scanners was used for evaluation. Segmentation methods had to be containerized and submitted to the challenge organizers. Five evaluation metrics were used to rank the methods: (1) Dice similarity coefficient, (2) modified Hausdorff distance (95th percentile), (3) absolute log-transformed volume difference, (4) sensitivity for detecting individual lesions, and (5) F1-score for individual lesions. Additionally, methods were ranked on their inter-scanner robustness. Twenty participants submitted their method for evaluation. This paper provides a detailed analysis of the results. In brief, there is a cluster of four methods that rank significantly better than the other methods, with one clear winner. The inter-scanner robustness ranking shows that not all methods generalize to unseen scanners. The challenge remains open for future submissions and provides a public platform for method evaluation.

Continue reading

Left atrial segmentation in a few seconds using fully convolutional network and transfer learning

By Élodie Puybareau, Zhou Zhao, Younes Khoudli, Edwin Carlinet, Yongchao Xu, Jérôme Lacotte, Thierry Géraud

2018-10-25

In Proceedings of the workshop on statistical atlases and computational modelling of the heart (STACOM 2018), in conjunction with MICCAI

Abstract

In this paper, we propose a fast automatic method that segments left atrial cavity from 3D GE-MRIs without any manual assistance, using a fully convolutional network (FCN) and transfer learning. This FCN is the base network of VGG-16, pre-trained on ImageNet for natural image classification, and fine tuned with the training dataset of the MICCAI 2018 Atrial Segmentation Challenge. It relies on the “pseudo-3D” method published at ICIP 2017, which allows for segmenting objects from 2D color images which contain 3D information of MRI volumes. For each $n^{\text{th}}$ slice of the volume to segment, we consider three images, corresponding to the $(n-1)^{\text{th}}$, $n^{\text{th}}$, and $(n+1)^{\text{th}}$ slices of the original volume. These three gray-level 2D images are assembled to form a 2D RGB color image (one image per channel). This image is the input of the FCN to obtain a 2D segmentation of the $n^{\text{th}}$ slice. We process all slices, then stack the results to form the 3D output segmentation. With such a technique, the segmentation of the left atrial cavity on a 3D volume takes only a few seconds. We obtain a Dice score of 0.92 both on the training set in our experiments before the challenge, and on the test set of the challenge.

Continue reading

Segmentation des hyperintensités de la matière blanche en quelques secondes à l’aide d’un réseau de neurones convolutif et de transfert d’apprentissage

By Élodie Puybareau, Yongchao Xu, Joseph Chazalon, Isabelle Bloch, Thierry Géraud

2018-05-04

In Actes du congrès reconnaissance des formes, image, apprentissage et perception (RFIAP), session spéciale “deep learning, deep in france”

Abstract

Dans cet article, nous proposons une méthode automatique et rapide pour segmenter les hyper-intensités de la matière blanche (WMH) dans des images IRM cérébrales 3D, en utilisant un réseau de neurones entièrement convolutif (FCN) et du transfert d’apprentissage. Ce FCN est le réseau neuronal du Visual Geometry Group (VGG) pré-entraîné sur la base ImageNet pour la classification des images naturelles, et affiné avec l’ensemble des données d’entraînement du concours MICCAI WMH. Nous considérons trois images pour chaque coupe du volume à segmenter, provenant des acquisitions en T1, en FLAIR, et le résultat d’un opérateur morphologique appliqué sur le FLAIR, le top-hat, qui met en évidence les petites structures de forte intensité. Ces trois images 2D sont assemblées pour former une image 2D-3 canaux interprétée comme une image en couleurs, ensuite passée au FCN pour obtenir la segmentation 2D de la coupe correspondante. Nous traitons ainsi toutes les coupes pour former la segmentation de sortie 3D. Avec une telle technique, la segmentation de WMH sur un volume cérébral 3D prend environ 10 secondes, pré-traitement compris. Notre technique a été classée 6e sur 20 participants au concours MICCAI WMH.

Continue reading

The challenge of cerebral magnetic resonance imaging in neonates: A new method using mathematical morphology for the segmentation of structures including diffuse excessive high signal intensities

Abstract

Preterm birth is a multifactorial condition associated with increased morbidity and mortality. Diffuse excessive high signal intensity (DEHSI) has been recently described on T2-weighted MR sequences in this population and thought to be associated with neuropathologies. To date, no robust and reproducible method to assess the presence of white matter hyperintensities has been developed, perhaps explaining the current controversy over their prognostic value. The aim of this paper is to propose a new semi-automated framework to detect DEHSI on neonatal brain MR images having a particular pattern due to the physiological lack of complete myelination of the white matter. A novel method for semi- automatic segmentation of neonatal brain structures and DEHSI, based on mathematical morphology and on max-tree representations of the images is thus described. It is a mandatory first step to identify and clinically assess homogeneous cohorts of neonates for DEHSI and/or volume of any other segmented structures. Implemented in a user-friendly interface, the method makes it straightforward to select relevant markers of structures to be segmented, and if needed, apply eventually manual corrections. This method responds to the increasing need for providing medical experts with semi-automatic tools for image analysis, and overcomes the limitations of visual analysis alone, prone to subjectivity and variability. Experimental results demonstrate that the method is accurate, with excellent reproducibility and with very few manual corrections needed. Although the method was intended initially for images acquired at 1.5T, which corresponds to usual clinical practice, preliminary results on images acquired at 3T suggest that the proposed approach can be generalized.

Continue reading

White matter hyperintensities segmentation in a few seconds using fully convolutional network and transfer learning

By Yongchao Xu, Thierry Géraud, Élodie Puybareau, Isabelle Bloch, Joseph Chazalon

2018-02-06

In Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries— 3rd international workshop, BrainLes 2017, held in conjunction with MICCAI 2017, quebec city, QC, canada, september 14 2017, revised selected papers

Abstract

Continue reading

Segmentation d’IRM de cerveaux de nouveau-nés en quelques secondes à l’aide d’un réseau de neurones convolutif <i>pseudo-3D</i> et de transfert d’apprentissage

By Yongchao Xu, Thierry Géraud, Isabelle Bloch

2017-06-20

In Actes du 26e colloque GRETSI

Abstract

L’imagerie par résonance magnétique (IRM) du cerveau est utilisée sur les nouveau-nés pour évaluer l’évolution du cerveau et diagnostiquer des maladies neurologiques. Ces examens nécessitent souvent une analyse quantitative des différents tissus du cerveau, de sorte qu’avoir une segmentation précise est essentiel. Dans cet article, nous proposons une méthode automatique rapide de segmentation en différents tissus des images IRM 3D de cerveaux de nouveau-nés ; elle utilise un réseau de neurones totalement convolutif (FCN) et du transfert d’apprentissage. Par rapport aux approches similaires qui reposent soit sur des patchs 2D ou 3D, soit sur des FCN totalement 3D, notre méthode est beaucoup plus rapide : elle ne prend que quelques secondes, et une seule modalité (T2) est nécessaire. Afin de prendre les informations 3D en compte, trois coupes 2D successives sont empilées pour former une image 2D en couleurs, dont l’ensemble sur tout le volume sert d’entrée à un FCN, pré-entraîné sur ImageNet pour la classification d’images naturelles. Nos expériences sur un ensemble de données de référence montrent que notre méthode obtient des résultats du niveau de ceux de l’état de l’art.

Continue reading

From neonatal to adult brain MR image segmentation in a few seconds using 3D-like fully convolutional network and transfer learning

By Yongchao Xu, Thierry Géraud, Isabelle Bloch

2017-06-12

In Proceedings of the 23rd IEEE international conference on image processing (ICIP)

Abstract

Brain magnetic resonance imaging (MRI) is widely used to assess brain developments in neonates and to diagnose a wide range of neurological diseases in adults. Such studies are usually based on quantitative analysis of different brain tissues, so it is essential to be able to classify them accurately. In this paper, we propose a fast automatic method that segments 3D brain MR images into different tissues using fully convolutional network (FCN) and transfer learning. As compared to existing deep learning-based approaches that rely either on 2D patches or on fully 3D FCN, our method is way much faster: it only takes a few seconds, and only a single modality (T1 or T2) is required. In order to take the 3D information into account, all 3 successive 2D slices are stacked to form a set of 2D color images, which serve as input for the FCN pre-trained on ImageNet for natural image classification. To the best of our knowledge, this is the first method that applies transfer learning to segment both neonatal and adult brain 3D MR images. Our experiments on two public datasets show that our method achieves state-of-the-art results.

Continue reading

La pseudo-distance du dahu

Abstract

La distance de la barrière minimum est définie comme le plus petit intervalle de l’ensemble des niveaux de gris le long d’un chemin entre deux points dans une image. Pour cela, on considère que l’image est un graphe à valeurs sur les sommets. Cependant, cette définition ne correspond pas à l’interprétation d’une image comme étant une carte d’élévation, c’est-à-dire, un paysage continu d’une manière ou d’une autre. En se plaçant dans le cadre des fonctions multivoques, nous présentons une nouvelle définition pour cette distance. Cette définition, compatible avec l’interprétation paysagère, est dénuée de problèmes topologiques bien qu’en restant dans un monde discret. Nous montrons que la distance proposée est reliée à la structure morphologique d’arbre des formes, qui permet de surcroît un calcul rapide et exact de cette distance. Cela se démarque de sa définition classique, pour laquelle le seul calcul rapide n’est qu’approximatif.

Continue reading