Edwin Carlinet

Analyse structurelle de l’influence du bruit sur l’arbre alpha

By Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, Didier Verna

2022-06-14

In 29e colloque sur le traitement du signal et des images

Abstract

L’arbre alpha est une représentation hiérarchique utilisée dans divers traitements d’une image tels que la segmentation ou la simplification. Ces traitements sont néanmoins sensibles au bruit, ce qui nécessite parfois de les adapter. Or, l’influence du bruit sur la structure de l’arbre alpha n’a été que peu étudiée dans la littérature. Ainsi, nous proposons une étude de l’impact du bruit en fonction de son niveau sur la structure de l’arbre. De plus, nous étendons cette étude à la persistance des nœuds de l’arbre en fonction d’une énergie donnée, et nous concluons que certaines fonctionnelles sont plus sensibles au bruit que d’autres.

Continue reading

Estimation of the noise level function for color images using mathematical morphology and non-parametric statistics

By Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, Didier Verna

2022-04-08

In Proceedings of the 26th international conference on pattern recognition

Abstract

Noise level information is crucial for many image processing tasks, such as image denoising. To estimate it, it is necessary to find homegeneous areas within the image which contain only noise. Rank-based methods have proven to be efficient to achieve such a task. In the past, we proposed a method to estimate the noise level function (NLF) of grayscale images using the tree of shapes (ToS). This method, relying on the connected components extracted from the ToS computed on the noisy image, had the advantage of being adapted to the image content, which is not the case when using square blocks, but is still restricted to grayscale images. In this paper, we extend our ToS-based method to color images. Unlike grayscale images, the pixel values in multivariate images do not have a natural order relationship, which is a well-known issue when working with mathematical morphology and rank statistics. We propose to use the multivariate ToS to retrieve homogeneous regions. We derive an order relationship for the multivariate pixel values thanks to a complete lattice learning strategy and use it to compute the rank statistics. The obtained multivariate NLF is composed of one NLF per channel. The performance of the proposed method is compared with the one obtained using square blocks, and validates the soundness of the multivariate ToS structure for this task.

Continue reading

A benchmark of named entity recognition approaches in historical documents

By Nathalie Abadie, Edwin Carlinet, Joseph Chazalon, Bertrand Duménieu

2022-04-07

In Proceedings of the 15th IAPR international workshop on document analysis system

Abstract

Named entity recognition (NER) is a necessary step in many pipelines targeting historical documents. Indeed, such natural language processing techniques identify which class each text token belongs to, e.g. “person name”, “location”, “number”. Introducing a new public dataset built from 19th century French directories, we first assess how noisy modern, off-the-shelf OCR are. Then, we compare modern CNN- and Transformer-based NER techniques which can be reasonably used in the context of historical document analysis. We measure their requirements in terms of training data, the effects of OCR noise on their performance, and show how Transformer-based NER can benefit from unsupervised pre-training and supervised fine-tuning on noisy data. Results can be reproduced using resources available at https://github.com/soduco/paper-ner-bench-das22 and https://zenodo.org/record/6394464

Continue reading

Max-tree computation on GPUs

By Nicolas Blin, Edwin Carlinet, Florian Lemaitre, Lionel Lacassagne, Thierry Géraud

2022-03-09

In IEEE Transactions on Parallel and Distributed Systems

Abstract

In Mathematical Morphology, the max-tree is a region-based representation that encodes the inclusion relationship of the threshold sets of an image. This tree has been proven useful in numerous image processing applications. For the last decade, works have been led to improve the building time of this structure; mixing algorithmic optimizations, parallel and distributed computing. Nevertheless, there is still no algorithm that takes benefit from the computing power of the massively parallel architectures. In this work, we propose the first GPU algorithm to compute the max-tree. The proposed approach leads to significant speed-ups, and is up to one order of magnitude faster than the current State-of-the-Art parallel CPU algorithms. This work paves the way for a max-tree integration in image processing GPU pipelines and real-time image processing based on Mathematical Morphology. It is also a foundation for porting other image representations from Mathematical Morphology on GPUs.

Continue reading

Introducing the boundary-aware loss for deep image segmentation

By Minh Ôn Vũ Ngọc, Yizi Chen, Nicolas Boutry, Joseph Chazalon, Edwin Carlinet, Jonathan Fabrizio, Clément Mallet, Thierry Géraud

2021-11-28

In Proceedings of the 32nd british machine vision conference (BMVC)

Abstract

Most contemporary supervised image segmentation methods do not preserve the initial topology of the given input (like the closeness of the contours). One can generally remark that edge points have been inserted or removed when the binary prediction and the ground truth are compared. This can be critical when accurate localization of multiple interconnected objects is required. In this paper, we present a new loss function, called, Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut algorithm. It is able to locate what we call the leakage pixels and to encode the boundary information coming from the given ground truth. Thanks to this adapted loss, we are able to significantly refine the quality of the predicted boundaries during the learning procedure. Furthermore, our loss function is differentiable and can be applied to any kind of neural network used in image processing. We apply this loss function on the standard U-Net and DC U-Net on Electron Microscopy datasets. They are well-known to be challenging due to their high noise level and to the close or even connected objects covering the image space. Our segmentation performance, in terms of Variation of Information (VOI) and Adapted Rank Index (ARI), are very promising and lead to $\approx{}15%$ better scores of VOI and $\approx{}5%$ better scores of ARI than the state-of-the-art. The code of boundary-awareness loss is freely available at https://github.com/onvungocminh/MBD_BAL

Continue reading

ICDAR 2021 competition on historical map segmentation

By Joseph Chazalon, Edwin Carlinet, Yizi Chen, Julien Perret, Bertrand Duménieu, Clément Mallet, Thierry Géraud, Vincent Nguyen, Nam Nguyen, Josef Baloun, Ladislav Lenc, Pavel Král

2021-05-17

In Proceedings of the 16th international conference on document analysis and recognition (ICDAR’21)

Abstract

This paper presents the final results of the ICDAR 2021 Competition on Historical Map Segmentation (MapSeg), encouraging research on a series of historical atlases of Paris, France, drawn at 1/5000 scale between 1894 and 1937. The competition featured three tasks, awarded separately. Task 1 consists in detecting building blocks and was won by the L3IRIS team using a DenseNet-121 network trained in a weakly supervised fashion. This task is evaluated on 3 large images containing hundreds of shapes to detect. Task 2 consists in segmenting map content from the larger map sheet, and was won by the UWB team using a U-Net-like FCN combined with a binarization method to increase detection edge accuracy. Task 3 consists in locating intersection points of geo-referencing lines, and was also won by the UWB team who used a dedicated pipeline combining binarization, line detection with Hough transform, candidate filtering, and template matching for intersection refinement. Tasks 2 and 3 are evaluated on 95 map sheets with complex content. Dataset, evaluation tools and results are available under permissive licensing at https://icdar21-mapseg.github.io/.

Continue reading

Revisiting the Coco panoptic metric to enable visual and qualitative analysis of historical map instance segmentation

By Joseph Chazalon, Edwin Carlinet

2021-05-17

In Proceedings of the 16th international conference on document analysis and recognition (ICDAR’21)

Abstract

Segmentation is an important task. It is so important that there exist tens of metrics trying to score and rank segmentation systems. It is so important that each topic has its own metric because their problem is too specific. Does it? What are the fundamental differences with the ZoneMap metric used for page segmentation, the COCO Panoptic metric used in computer vision and metrics used to rank hierarchical segmentations? In this paper, while assessing segmentation accuracy for historical maps, we explain, compare and demystify some the most used segmentation evaluation protocols. In particular, we focus on an alternative view of the COCO Panoptic metric as a classification evaluation; we show its soundness and propose extensions with more “shape-oriented” metrics. Beyond a quantitative metric, this paper aims also at providing qualitative measures through precision-recall maps that enable visualizing the success and the failures of a segmentation method.

Continue reading

Vectorization of historical maps using deep edge filtering and closed shape extraction

By Yizi Chen, Edwin Carlinet, Joseph Chazalon, Clément Mallet, Bertrand Duménieu, Julien Perret

2021-05-17

In Proceedings of the 16th international conference on document analysis and recognition (ICDAR’21)

Abstract

Maps have been a unique source of knowledge for centuries. Such historical documents provide invaluable information for analyzing the complex spatial transformation of landscapes over important time frames. This is particularly true for urban areas that encompass multiple interleaved research domains (social sciences, economy, etc.). The large amount and significant diversity of map sources call for automatic image processing techniques in order to extract the relevant objects under a vectorial shape. The complexity of maps (text, noise, digitization artifacts, etc.) has hindered the capacity of proposing a versatile and efficient raster-to-vector approaches for decades. We propose a learnable, reproducible, and reusable solution for the automatic transformation of raster maps into vector objects (building blocks, streets, rivers). It is built upon the complementary strength of mathematical morphology and convolutional neural networks through efficient edge filtering. Evenmore, we modify ConnNet and combine with deep edge filtering architecture to make use of pixel connectivity information and built an end-to-end system without requiring any post-processing techniques. In this paper, we focus on the comprehensive benchmark on various architectures on multiple datasets coupled with a novel vectorization step. Our experimental results on a new public dataset using COCO Panoptic metric exhibit very encouraging results confirmed by a qualitative analysis of the success and failure cases of our approach. Code, dataset, results and extra illustrations are freely available at https://github.com/soduco/ICDAR-2021-Vectorization.

Continue reading

Combining deep learning and mathematical morphology for historical map segmentation

By Yizi Chen, Edwin Carlinet, Joseph Chazalon, Clément Mallet, Bertrand Duménieu, Julien Perret

2021-02-16

In Proceedings of the IAPR international conference on discrete geometry and mathematical morphology (DGMM)

Abstract

The digitization of historical maps enables the study of ancient, fragile, unique, and hardly accessible information sources. Main map features can be retrieved and tracked through the time for subsequent thematic analysis. The goal of this work is the vectorization step, i.e., the extraction of vector shapes of the objects of interest from raster images of maps. We are particularly interested in closed shape detection such as buildings, building blocks, gardens, rivers, etc. in order to monitor their temporal evolution. Historical map images present significant pattern recognition challenges. The extraction of closed shapes by using traditional Mathematical Morphology (MM) is highly challenging due to the overlapping of multiple map features and texts. Moreover, state-of-the-art Convolutional Neural Networks (CNN) are perfectly designed for content image filtering but provide no guarantee about closed shape detection. Also, the lack of textural and color information of historical maps makes it hard for CNN to detect shapes that are represented by only their boundaries. Our contribution is a pipeline that combines the strengths of CNN (efficient edge detection and filtering) and MM (guaranteed extraction of closed shapes) in order to achieve such a task. The evaluation of our approach on a public dataset shows its effectiveness for extracting the closed boundaries of objects in historical maps.

Continue reading

Filtres connexes multivariés par fusion d’arbres de composantes

By Edwin Carlinet, Thierry Géraud

2019-06-14

In Proceedings of the 27st symposium on signal and image processing (GRETSI)

Abstract

Les arbres de composantes fournissent une représentation d’images de haut niveau, hiérarchisée et invariante par contraste, adaptée à de nombreuses tâches de traitement d’image. Pourtant, ils sont mal définis sur des données multivariées, telle que celles des images couleur, des images multimodalités, des images multibande, etc. Les solutions courantes, telles que le traitement marginal, ou l’imposition d’un ordre total sur les données, ne sont pas satisfaisantes et génèrent de nombreux problèmes, tels que des artefacts visuels, la perte d’invariances, etc. Dans cet article, inspiré par la manière dont l’arbre des formes multivariés (MToS) a été défini, nous proposons une définition pour un Min-Tree ou un Max-Tree multivarié. Nous n’imposons pas un ordre total arbitraire aux valeurs; nous utilisons uniquement la relation d’inclusion entre les composantes. En conséquence, nous introduisons une nouvelle classe d’ouvertures et de fermetures connectées multivariées.

Continue reading