Minh Ôn Vũ Ngọc

Automatic vectorization of historical maps: A benchmark

Abstract

Shape vectorization is a key stage of the digitization of large-scale historical maps, especially city maps that exhibit complex and valuable details. Having access to digitized buildings, building blocks, street networks and other geographic content opens numerous new approaches for historical studies such as change tracking, morphological analysis and density estimations. In the context of the digitization of Paris atlases created in the 19th and early 20th centuries, we have designed a supervised pipeline that reliably extract closed shapes from historical maps. This pipeline is based on a supervised edge filtering stage using deep filters, and a closed shape extraction stage using a watershed transform. It relies on probable multiple suboptimal methodological choices that hamper the vectorization performances in terms of accuracy and completeness. Objectively investigating which solutions are the most adequate among the numerous possibilities is comprehensively addressed in this paper. The following contributions are subsequently introduced: (i) we propose an improved training protocol for map digitization; (ii) we introduce a joint optimization of the edge detection and shape extraction stages; (iii) we compare the performance of state-of-the-art deep edge filters with topology-preserving loss functions, including vision transformers; (iv) we evaluate the end-to-end deep learnable watershed against Meyer watershed. We subsequently design the critical path for a fully automatic extraction of key elements of historical maps. All the data, code, benchmark results are freely available at https://github.com/soduco/Benchmark_historical_map_vectorization.

Continue reading

The Dahu graph-cut for interactive segmentation on 2D/3D images

Abstract

Interactive image segmentation is an important application in computer vision for selecting objects of interest in images. Several interactive segmentation methods are based on distance transform algorithms. However, the most known distance transform, geodesic distance, is sensitive to noise in the image and to seed placement. Recently, the Dahu pseudo-distance, a continuous version of the minimum barrier distance (MBD), is proved to be more powerful than the geodesic distance in noisy and blurred images. This paper presents a method for combining the Dahu pseudo-distance with edge information in a graph-cut optimization framework and leveraging each’s complementary strengths. Our method works efficiently on both 2D/3D images and videos. Results show that our method achieves better performance than other distance-based and graph-cut methods, thereby reducing the user’s efforts.

Continue reading

Topology-aware method to segment 3D plan tissue images

By Minh Ôn Vũ Ngọc, Nicolas Boutry, Jonathan Fabrizio

2022-10-25

In 36th conference on neural information processing systems, AI for science workshop

Abstract

The study of genetic and molecular mechanisms underlying tissue morphogenesis has received a lot of attention in biology. Especially, accurate segmentation of tissues into individual cells plays an important role for quantitative analyzing the development of the growing organs. However, instance cell segmentation is still a challenging task due to the quality of the image and the fine-scale structure. Any small leakage in the boundary prediction can merge different cells together, thereby damaging the global structure of the image. In this paper, we propose an end-to-end topology-aware 3D segmentation method for plant tissues. The strength of the method is that it takes care of the 3D topology of segmented structures. The keystone is a training phase and a new topology-aware loss - the CavityLoss - that are able to help the network to focus on the topological errors to fix them during the learning phase. The evaluation of our method on both fixed and live plant organ datasets shows that our method outperforms state-of-the-art methods (and contrary to state-of-the-art methods, does not require any post-processing stage). The code of CavityLoss is freely available at https://github.com/onvungocminh/CavityLoss

Continue reading

Introducing the boundary-aware loss for deep image segmentation

By Minh Ôn Vũ Ngọc, Yizi Chen, Nicolas Boutry, Joseph Chazalon, Edwin Carlinet, Jonathan Fabrizio, Clément Mallet, Thierry Géraud

2021-11-28

In Proceedings of the 32nd british machine vision conference (BMVC)

Abstract

Most contemporary supervised image segmentation methods do not preserve the initial topology of the given input (like the closeness of the contours). One can generally remark that edge points have been inserted or removed when the binary prediction and the ground truth are compared. This can be critical when accurate localization of multiple interconnected objects is required. In this paper, we present a new loss function, called, Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut algorithm. It is able to locate what we call the leakage pixels and to encode the boundary information coming from the given ground truth. Thanks to this adapted loss, we are able to significantly refine the quality of the predicted boundaries during the learning procedure. Furthermore, our loss function is differentiable and can be applied to any kind of neural network used in image processing. We apply this loss function on the standard U-Net and DC U-Net on Electron Microscopy datasets. They are well-known to be challenging due to their high noise level and to the close or even connected objects covering the image space. Our segmentation performance, in terms of Variation of Information (VOI) and Adapted Rank Index (ARI), are very promising and lead to $\approx{}15%$ better scores of VOI and $\approx{}5%$ better scores of ARI than the state-of-the-art. The code of boundary-awareness loss is freely available at https://github.com/onvungocminh/MBD_BAL

Continue reading

A new minimum barrier distance for multivariate images with applications to salient object detection, shortest path finding, and segmentation

By Minh Ôn Vũ Ngọc, Nicolas Boutry, Jonathan Fabrizio, Thierry Géraud

2020-06-02

In Computer Vision and Image Understanding

Abstract

Distance transforms and the saliency maps they induce are widely used in image processing, computer vision, and pattern recognition. One of the most commonly used distance transform is the geodesic one. Unfortunately, this distance does not always achieve satisfying results on noisy or blurred images. Recently, a new (pseudo-)distance, called the minimum barrier distance (MBD), more robust to pixel variations, has been introduced. Some years after, Géraud et al. have proposed a good and fast-to compute approximation of this distance: the Dahu pseudo-distance. Since this distance was initially developped for grayscale images, we propose here an extension of this transform to multivariate images; we call it vectorial Dahu pseudo-distance. An efficient way to compute it is provided in this paper. Besides, we provide benchmarks demonstrating how much the vectorial Dahu pseudo-distance is more robust and competitive compared to other MB-based distances, which shows how much this distance is promising for salient object detection, shortest path finding, and object segmentation.

Continue reading

A new minimum barrier distance for multivariate images with applications to salient object detection, shortest path finding, and segmentation

Abstract

Hierarchical image representations are widely used in image processing to model the content of an image in the multi-scale structure. A well-known hierarchical representation is the tree of shapes (ToS) which encodes the inclusion relationship between connected components from different thresholded levels. This kind of tree is self-dual, contrast-change invariant and popular in computer vision community. Typically, in our work, we use this representation to compute the new distance which belongs to the mathematical morphology domain. Distance transforms and the saliency maps they induce are generally used in image processing, computer vision, and pattern recognition. One of the most commonly used distance transforms is the geodesic one. Unfortunately, this distance does not always achieve satisfying results on noisy or blurred images. Recently, a new pseudo-distance, called the minimum barrier distance (MBD), more robust to pixel fluctuation, has been introduced. Some years after, Géraud et al. have proposed a good and fast-to-compute approximation of this distance: the Dahu pseudo-distance. Since this distance was initially developed for grayscale images, we propose here an extension of this transform to multivariate images; we call it vectorial Dahu pseudo-distance. This new distance is easily and efficiently computed thanks to the multivariate tree of shapes (MToS). We propose an efficient way to compute this distance and its deduced saliency map in this thesis. We also investigate the properties of this distance in dealing with noise and blur in the image. This distance has been proved to be robust for pixel invariant. To validate this new distance, we provide benchmarks demonstrating how the vectorial Dahu pseudo-distance is more robust and competitive compared to other MB-based distances. This distance is promising for salient object detection, shortest path finding, and object segmentation. Moreover, we apply this distance to detect the document in videos. Our method is a region-based approach which relies on visual saliency deduced from the Dahu pseudo-distance. We show that the performance of our method is competitive with state-of-the-art methods on the ICDAR Smartdoc 2015 Competition dataset.

Continue reading

Document detection in videos captured by smartphones using a saliency-based method

By Minh Ôn Vũ Ngọc, Jonathan Fabrizio, Thierry Géraud

2018-09-20

In International conference on document analysis and recognition workshops (ICDARW)

Abstract

Smartphones are now widely used to digitizepaper documents. Document detection is the first importantstep of the digitization process. Whereas many methods extractlines from contours as candidates for the document boundary, we present in this paper a region-based approach. A key feature of our method is that it relies on visual saliency, using a recent distance existing in mathematical morphology. We show that the performance of our method is competitive with state-of-the-art methods on the ICDAR Smartdoc 2015 Competition dataset.

Continue reading

Saliency-based detection of identity documents captured by smartphones

By Minh Ôn Vũ Ngọc, Jonathan Fabrizio, Thierry Géraud

2018-02-02

In Proceedings of the IAPR international workshop on document analysis systems (DAS)

Abstract

Smartphones have became an easy and convenient mean to acquire documents. In this paper, we focus on the automatic segmentation of identity documents in smartphone photos or videos using visual saliency (VS). VS-based approaches, which pertain to computer vision, have not be considered yet for this particular task. Here we compare different VS methods, and we propose a new VS scheme, based on a recent distance belonging to the scope of mathematical morphology. We show that the saliency maps we obtain are competitive with state-of-the-art visual saliency methods and, that such approaches are very promising for use in identity document detection and segmentation, even without taking into account any prior knowledge about document contents. In particular they can work in real-time on smartphones.

Continue reading