Guillaume Tochon

Assimilation de données variationnelle de séries temporelles d’images sentinel-2 avec un modèle dynamique auto-supervisé

By Anthony Frion, Lucas Drumetz, Mauro Dalla Mura, Guillaume Tochon, Abdeldjalil Aïssa-El-Bey

2022-06-14

In 29e colloque sur le traitement du signal et des images

Abstract

Au cours des dernières années, l’apprentissage profond a acquis une importance croissante dans de nombreux domaines scientifiques, notamment en ce qui concerne le traitement d’images, et en particulier pour le traitement des données issues de satellites. Le paradigme le plus courant en ce qui concerne l’apprentissage profond est l’apprentissage supervisé, qui requiert une grande quantité de données annotées représentant la vérité terrain pour la tâche d’intérêt. Or, obtenir des données correctement annotées pose souvent des difficultés financières ou techniques importantes. Pour cette raison, nous nous plaçons ici dans le cadre de l’apprentissage auto-supervisé. Nous proposons un modèle d’apprentissage profond inspiré de la théorie de l’opérateur de Koopman qui apprend, à partir de séries temporelles d’images multispectrales Sentinel-2, à modéliser les dynamiques de long terme de réflectance des pixels. Après son entraînement, notre modèle peut être utilisé dans divers problèmes inverses faisant intervenir la dynamique temporelle pour résoudre différentes tâches telles que l’interpolation ou le débruitage de données.

Continue reading

Estimation of the noise level function for color images using mathematical morphology and non-parametric statistics

By Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, Didier Verna

2022-04-08

In Proceedings of the 26th international conference on pattern recognition

Abstract

Noise level information is crucial for many image processing tasks, such as image denoising. To estimate it, it is necessary to find homegeneous areas within the image which contain only noise. Rank-based methods have proven to be efficient to achieve such a task. In the past, we proposed a method to estimate the noise level function (NLF) of grayscale images using the tree of shapes (ToS). This method, relying on the connected components extracted from the ToS computed on the noisy image, had the advantage of being adapted to the image content, which is not the case when using square blocks, but is still restricted to grayscale images. In this paper, we extend our ToS-based method to color images. Unlike grayscale images, the pixel values in multivariate images do not have a natural order relationship, which is a well-known issue when working with mathematical morphology and rank statistics. We propose to use the multivariate ToS to retrieve homogeneous regions. We derive an order relationship for the multivariate pixel values thanks to a complete lattice learning strategy and use it to compute the rank statistics. The obtained multivariate NLF is composed of one NLF per channel. The performance of the proposed method is compared with the one obtained using square blocks, and validates the soundness of the multivariate ToS structure for this task.

Continue reading

Learning grayscale mathematical morphology with smooth morphological layers

Abstract

The integration of mathematical morphology operations within convolutional neural network architectures has received an increasing attention lately. However, replacing standard convolution layers by morphological layers performing erosions or dilations is particularly challenging because the min and max operations are not differentiable. P-convolution layers were proposed as a possible solution to this issue since they can act as smooth differentiable approximation of min and max operations, yielding pseudo-dilation or pseudo-erosion layers. In a recent work, we proposed two novel morphological layers based on the same principle as the p-convolution, while circumventing its principal drawbacks, and showcased their capacity to efficiently learn grayscale morphological operators while raising several edge cases. In this work, we complete those previous results by thoroughly analyzing the behavior of the proposed layers and by investigating and settling the reported edge cases. We also demonstrate the compatibility of one of the proposed morphological layers with binary morphological frameworks.

Continue reading

QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation — Analysis of ranking scores and benchmarking results

By Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Linmin Pei, Murat AK, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh Hoang Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Élodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

2022-01-09

In Journal of Machine Learning for Biomedical Imaging (MELBA)

Abstract

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

Continue reading

Learning Sentinel-2 spectral dynamics for long-run predictions using residual neural networks

By Joaquim Estopinan, Guillaume Tochon, Lucas Drumetz

2021-05-04

In Proceedings of the 29th european signal processing conference (EUSIPCO)

Abstract

Making the most of multispectral image time-series is a promising but still relatively under-explored research direction because of the complexity of jointly analyzing spatial, spectral and temporal information. Capturing and characterizing temporal dynamics is one of the important and challenging issues. Our new method paves the way to capture real data dynamics and should eventually benefit applications like unmixing or classification. Dealing with time-series dynamics classically requires the knowledge of a dynamical model and an observation model. The former may be incorrect or computationally hard to handle, thus motivating data-driven strategies aiming at learning dynamics directly from data. In this paper, we adapt neural network architectures to learn periodic dynamics of both simulated and real multispectral time-series. We emphasize the necessity of choosing the right state variable to capture periodic dynamics and show that our models can reproduce the average seasonal dynamics of vegetation using only one year of training data.

Continue reading

Stability of the tree of shapes to additive noise

By Nicolas Boutry, Guillaume Tochon

2021-03-02

In Proceedings of the IAPR international conference on discrete geometry and mathematical morphology (DGMM)

Abstract

The tree of shapes (ToS) is a famous self-dual hierarchical structure in mathematical morphology, which represents the inclusion relationship of the shapes (i.e. the interior of the level lines with holes filled) in a grayscale image. The ToS has already found numerous applications in image processing tasks, such as grain filtering, contour extraction, image simplification, and so on. Its structure consistency is bound to the cleanliness of the level lines, which are themselves deeply affected by the presence of noise within the image. However, according to our knowledge, no one has measured before how resistant to (additive) noise this hierarchical structure is. In this paper, we propose and compare several measures to evaluate the stability of the ToS structure to noise.

Continue reading

Going beyond p-convolutions to learn grayscale morphological operators

By Alexandre Kirszenberg, Guillaume Tochon, Élodie Puybareau, Jesus Angulo

2021-02-16

In Proceedings of the IAPR international conference on discrete geometry and mathematical morphology (DGMM)

Abstract

Integrating mathematical morphology operations within deep neural networks has been subject to increasing attention lately. However, replacing standard convolution layers with erosions or dilations is particularly challenging because the min and max operations are not differentiable. Relying on the asymptotic behavior of the counter-harmonic mean, p-convolutional layers were proposed as a possible workaround to this issue since they can perform pseudo-dilation or pseudo-erosion operations (depending on the value of their inner parameter p), and very promising results were reported. In this work, we present two new morphological layers based on the same principle as the p-convolutional layer while circumventing its principal drawbacks, and demonstrate their potential interest in further implementations within deep convolutional neural network architectures.

Continue reading

On some associations between mathematical morphology and artificial intelligence

By Isabelle Bloch, Samy Blusseau, Ramón Pino Pérez, Élodie Puybareau, Guillaume Tochon

2021-02-16

In Proceedings of the IAPR international conference on discrete geometry and mathematical morphology (DGMM)

Abstract

This paper aims at providing an overview of the use of mathematical morphology, in its algebraic setting, in several fields of artificial intelligence (AI). Three domains of AI will be covered. In the first domain, mathematical morphology operators will be expressed in some logics (propositional, modal, description logics) to answer typical questions in knowledge representation and reasoning, such as revision, fusion, explanatory relations, satisfying usual postulates. In the second domain, spatial reasoning will benefit from spatial relations modeled using fuzzy sets and morphological operators, with applications in model-based image understanding. In the third domain, interactions between mathematical morphology and deep learning will be detailed. Morphological neural networks were introduced as an alternative to classical architectures, yielding a new geometry in decision surfaces. Deep networks were also trained to learn morphological operators and pipelines, and morphological algorithms were used as companion tools to machine learning, for pre/post processing or even regularization purposes. These ideas have known a large resurgence in the last few years and new ones are emerging.

Continue reading

Using separated inputs for multimodal brain tumor segmentation with 3D U-Net-like architectures

By Nicolas Boutry, Joseph Chazalon, Élodie Puybareau, Guillaume Tochon, Hugues Talbot, Thierry Géraud

2020-06-01

In Proceedings of the 5th international workshop, BrainLes 2019, held in conjunction with MICCAI 2019

Abstract

The work presented in this paper addresses the MICCAI BraTS 2019 challenge devoted to brain tumor segmentation using mag- netic resonance images. For each task of the challenge, we proposed and submitted for evaluation an original method. For the tumor segmentation task (Task 1), our convolutional neural network is based on a variant of the U-Net architecture of Ronneberger et al. with two modifications: first, we separate the four convolution parts to decorrelate the weights corresponding to each modality, and second, we provide volumes of size 240 * 240 * 3 as inputs in these convolution parts. This way, we profit of the 3D aspect of the input signal, and we do not use the same weights for separate inputs. For the overall survival task (Task 2), we compute explainable features and use a kernel PCA embedding followed by a Random Forest classifier to build a predictor with very few training samples. For the uncertainty estimation task (Task 3), we introduce and compare lightweight methods based on simple principles which can be applied to any segmentation approach. The overall performance of each of our contribution is honorable given the low computational requirements they have both for training and testing.

Continue reading