Nicolas Boutry

Topology-aware method to segment 3D plan tissue images

By Minh Ôn Vũ Ngọc, Nicolas Boutry, Jonathan Fabrizio

2022-10-25

In 36th conference on neural information processing systems, AI for science workshop

Abstract

The study of genetic and molecular mechanisms underlying tissue morphogenesis has received a lot of attention in biology. Especially, accurate segmentation of tissues into individual cells plays an important role for quantitative analyzing the development of the growing organs. However, instance cell segmentation is still a challenging task due to the quality of the image and the fine-scale structure. Any small leakage in the boundary prediction can merge different cells together, thereby damaging the global structure of the image. In this paper, we propose an end-to-end topology-aware 3D segmentation method for plant tissues. The strength of the method is that it takes care of the 3D topology of segmented structures. The keystone is a training phase and a new topology-aware loss - the CavityLoss - that are able to help the network to focus on the topological errors to fix them during the learning phase. The evaluation of our method on both fixed and live plant organ datasets shows that our method outperforms state-of-the-art methods (and contrary to state-of-the-art methods, does not require any post-processing stage). The code of CavityLoss is freely available at https://github.com/onvungocminh/CavityLoss

Continue reading

Some equivalence relation between persistent homology and morphological dynamics

By Nicolas Boutry, Laurent Najman, Thierry Géraud

2022-05-17

In Journal of Mathematical Imaging and Vision

Abstract

In Mathematical Morphology (MM), connected filters based on dynamics are used to filter the extrema of an image. Similarly, persistence is a concept coming from Persistent Homology (PH) and Morse Theory (MT) that represents the stability of the extrema of a Morse function. Since these two concepts seem to be closely related, in this paper we examine their relationship, and we prove that they are equal on $n$-D Morse functions, $n\geq 1$. More exactly, pairing a minimum with a $1$-saddle by dynamics or pairing the same $1$-saddle with a minimum by persistence leads exactly to the same pairing, assuming that the critical values of the studied Morse function are unique. This result is a step further to show how much topological data analysis and mathematical morphology are related, paving the way for a more in-depth study of the relations between these two research fields.

Continue reading

Local intensity order transformation for robust curvilinear object segmentation

By Tianyi Shi, Nicolas Boutry, Yongchao Xu, Thierry Géraud

2022-03-22

In IEEE Transactions on Image Processing

Abstract

Segmentation of curvilinear structures is important in many applications, such as retinal blood vessel segmentation for early detection of vessel diseases and pavement crack segmentation for road condition evaluation and maintenance. Currently, deep learning-based methods have achieved impressive performance on these tasks. Yet, most of them mainly focus on finding powerful deep architectures but ignore capturing the inherent curvilinear structure feature (e.g., the curvilinear structure is darker than the context) for a more robust representation. In consequence, the performance usually drops a lot on cross-datasets, which poses great challenges in practice. In this paper, we aim to improve the generalizability by introducing a novel local intensity order transformation (LIOT). Specifically, we transfer a gray-scale image into a contrast- invariant four-channel image based on the intensity order between each pixel and its nearby pixels along with the four (horizontal and vertical) directions. This results in a representation that preserves the inherent characteristic of the curvilinear structure while being robust to contrast changes. Cross-dataset evaluation on three retinal blood vessel segmentation datasets demonstrates that LIOT improves the generalizability of some state-of-the-art methods. Additionally, the cross-dataset evaluation between retinal blood vessel segmentation and pavement crack segmentation shows that LIOT is able to preserve the inherent characteristic of curvilinear structure with large appearance gaps. An implementation of the proposed method is available at https://github.com/TY-Shi/LIOT.

Continue reading

QU-BraTS: MICCAI BraTS 2020 challenge on quantifying uncertainty in brain tumor segmentation — Analysis of ranking scores and benchmarking results

By Raghav Mehta, Angelos Filos, Ujjwal Baid, Chiharu Sako, Richard McKinley, Michael Rebsamen, Katrin Dätwyler, Raphael Meier, Piotr Radojewski, Gowtham Krishnan Murugesan, Sahil Nalawade, Chandan Ganesh, Ben Wagner, Fang F. Yu, Baowei Fei, Ananth J. Madhuranthakam, Joseph A. Maldjian, Laura Daza, Catalina Gómez, Pablo Arbeláez, Chengliang Dai, Shuo Wang, Hadrien Reynaud, Yuanhan Mo, Elsa Angelini, Yike Guo, Wenjia Bai, Subhashis Banerjee, Linmin Pei, Murat AK, Sarahi Rosas-González, Ilyess Zemmoura, Clovis Tauber, Minh Hoang Vu, Tufve Nyholm, Tommy Löfstedt, Laura Mora Ballestar, Veronica Vilaplana, Hugh McHugh, Gonzalo Maso Talou, Alan Wang, Jay Patel, Ken Chang, Katharina Hoebel, Mishka Gidwani, Nishanth Arun, Sharut Gupta, Mehak Aggarwal, Praveer Singh, Elizabeth R. Gerstner, Jayashree Kalpathy-Cramer, Nicolas Boutry, Alexis Huard, Lasitha Vidyaratne, Md Monibor Rahman, Khan M. Iftekharuddin, Joseph Chazalon, Élodie Puybareau, Guillaume Tochon, Jun Ma, Mariano Cabezas, Xavier Llado, Arnau Oliver, Liliana Valencia, Sergi Valverde, Mehdi Amian, Mohammadreza Soltaninejad, Andriy Myronenko, Ali Hatamizadeh, Xue Feng, Quan Dou, Nicholas Tustison, Craig Meyer, Nisarg A. Shah, Sanjay Talbar, Marc-André Weber, Abhishek Mahajan, Andras Jakab, Roland Wiest, Hassan M. Fathallah-Shaykh, Arash Nazeri, Mikhail Milchenko, Daniel Marcus, Aikaterini Kotrotsou, Rivka Colen, John Freymann, Justin Kirby, Christos Davatzikos, Bjoern Menze, Spyridon Bakas, Yarin Gal, Tal Arbel

2022-01-09

In Journal of Machine Learning for Biomedical Imaging (MELBA)

Abstract

Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.

Continue reading

Gradient vector fields of discrete morse functions and watershed-cuts

By Nicolas Boutry, Gilles Bertrand, Laurent Najman

2021-12-31

In Proceedings of the IAPR international conference on discrete geometry and mathematical morphology (DGMM)

Abstract

Continue reading

Introducing the boundary-aware loss for deep image segmentation

By Minh Ôn Vũ Ngọc, Yizi Chen, Nicolas Boutry, Joseph Chazalon, Edwin Carlinet, Jonathan Fabrizio, Clément Mallet, Thierry Géraud

2021-11-28

In Proceedings of the 32nd british machine vision conference (BMVC)

Abstract

Most contemporary supervised image segmentation methods do not preserve the initial topology of the given input (like the closeness of the contours). One can generally remark that edge points have been inserted or removed when the binary prediction and the ground truth are compared. This can be critical when accurate localization of multiple interconnected objects is required. In this paper, we present a new loss function, called, Boundary-Aware loss (BALoss), based on the Minimum Barrier Distance (MBD) cut algorithm. It is able to locate what we call the leakage pixels and to encode the boundary information coming from the given ground truth. Thanks to this adapted loss, we are able to significantly refine the quality of the predicted boundaries during the learning procedure. Furthermore, our loss function is differentiable and can be applied to any kind of neural network used in image processing. We apply this loss function on the standard U-Net and DC U-Net on Electron Microscopy datasets. They are well-known to be challenging due to their high noise level and to the close or even connected objects covering the image space. Our segmentation performance, in terms of Variation of Information (VOI) and Adapted Rank Index (ARI), are very promising and lead to $\approx{}15%$ better scores of VOI and $\approx{}5%$ better scores of ARI than the state-of-the-art. The code of boundary-awareness loss is freely available at https://github.com/onvungocminh/MBD_BAL

Continue reading

Strong Euler wellcomposedness

Abstract

In this paper, we define a new flavour of well-composedness, called strong Euler well-composedness. In the general setting of regular cell complexes, a regular cell complex of dimension $n$ is strongly Euler well-composed if the Euler characteristic of the link of each boundary cell is $1$, which is the Euler characteristic of an $(n-1)$-dimensional ball. Working in the particular setting of cubical complexes canonically associated with $n$-D pictures, we formally prove in this paper that strong Euler well-composedness implies digital well-composedness in any dimension $n\geq 2$ and that the converse is not true when $n\geq 4$.

Continue reading

Continuous well-composedness implies digital well-composedness in $n$-D

By Nicolas Boutry, Rocio Gonzalez-Diaz, Laurent Najman, Thierry Géraud

2021-11-09

In Journal of Mathematical Imaging and Vision

Abstract

In this paper, we prove that when a $n$-D cubical set is continuously well-composed (CWC), that is, when the boundary of its continuous analog is a topological $(n-1)$-manifold, then it is digitally well-composed (DWC), which means that it does not contain any critical configuration. We prove this result thanks to local homology. This paper is the sequel of a previous paper where we proved that DWCness does not imply CWCness in 4D.

Continue reading

VerSe: A vertebrae labelling and segmentation benchmark for multi-detector CT images

Abstract

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.

Continue reading