Publications

Using subgroup discovery to relate odor pleasantness and intensity to peripheral nervous system reactions

By Maelle Moranges, Marc Plantevit, Moustafa Bensafi

2022-07-24

In IEEE Transactions on Affective Computing

Abstract

Activation of the autonomic nervous system is a primary characteristic of human hedonic responses to sensory stimuli. For smells, general tendencies of physiological reactions have been described using classical statistics. However, these physiological variations are generally not quantified precisely; each psychophysiological parameter has very often been studied separately and individual variability was not systematically considered. The current study presents an innovative approach based on data mining, whose goal is to extract knowledge from a dataset. This approach uses a subgroup discovery algorithm which allows extraction of rules that apply to as many olfactory stimuli and individuals as possible. These rules are described by intervals on a set of physiological attributes. Results allowed both quantifying how each physiological parameter relates to odor pleasantness and perceived intensity but also describing the participation of each individual to these rules. This approach can be applied to other fields of affective sciences characterized by complex and heterogeneous datasets.

Continue reading

What does my GNN really capture? On exploring internal GNN representations

By Luca Veyrin-Forrer, Ataollah Kamal, Stefan Duffner, Marc Plantevit, Céline Robardet

2022-07-23

In Proceedings of the 31st international joint conference on artificial intelligence (IJCAI’22)

Abstract

GNNs are efficient for classifying graphs but their internal workings is opaque which limits their field of application. Existing methods for explaining GNN focus on disclosing the relationships between input graphs and the model’s decision. In contrary, the method we propose isolates internal features, hidden in the network layers, which are automatically identified by the GNN to classify graphs. We show that this method makes it possible to know the parts of the input graphs used by GNN with much less bias than the SOTA methods and therefore to provide confidence in the decision process.

Continue reading

On robustness for the Skolem and positivity problems

By S. Akshay, Hugo Bazille, Blaise Genest, Mihir Vahanwala

2022-07-07

In 39th international symposium on theoretical aspects of computer science STACS

Abstract

The Skolem problem is a long-standing open problem in linear dynamical systems: can a linear recurrence sequence (LRS) ever reach 0 from a given initial configuration? Similarly, the positivity problem asks whether the LRS stays positive from an initial configuration. Deciding Skolem (or positivity) has been open for half a century: The best known decidability results are for LRS with special properties (e.g., low order recurrences). On the other hand, these problems are much easier for “uninitialized” variants, where the initial configuration is not fixed but can vary arbitrarily: checking if there is an initial configuration from which the LRS stays positive can be decided by polynomial time algorithms (Tiwari in 2004, Braverman in 2006).

Continue reading

A hybrid optimization tool for active magnetic regenerator

By Anna Ouskova Leonteva, Michel Risser, Radia Hamane, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet

2022-07-01

In Proceedings of the genetic and evolutionary computation conference companion

Abstract

Active Magnetic Regenerator (AMR) refrigeration is an innovate technology, which can reduce energy consumption and the depletion of the ozone layer. However, to develop a commercially applicable design of the AMR model is still an issue, because of the difficulty to find a configuration of the AMR parameters, which are suitable for various applications needs. In this work, we focus on the optimization method for finding a common parameters of the AMR model in two application modes: a magnetic refrigeration system and a thermo-magnetic generator. This paper proposes a robust optimisation tool, which ensures the scalability with respect to the number of objectives and allows to easily set up different optimisation experiments. A tool validation is presented. It is expected that this tool can help to make a qualitative jump in the development of AMR refrigeration.

Continue reading

PhishGNN: A phishing website detection framework using graph neural networks

By Tristan Bilot, Grégoire Geis, Badis Hammi

2022-07-01

In Proceedings of the 19th international conference on security and cryptography - SECRYPT

Abstract

Because of the importance of the web in our daily lives, phishing attacks have been causing a significant damage to both individuals and organizations. Indeed, phishing attacks are today among the most widespread and serious threats to the web and its users. The main approaches deployed against such attacks are blacklists. However, the latter represents numerous drawbacks. In this paper, we introduce PhishGNN, a Deep Learning framework based on Graph Neural Networks, which leverages and uses the hyperlink graph structure of web- sites along with different other hand-designed features. The performance results obtained, demonstrate that PhishGNN outperforms state of the art results with a 99.7% prediction accuracy.

Continue reading

Greibach normal form for $\omega$-algebraic systems and weighted simple $\omega$-pushdown automata

By Manfred Droste, Sven Dziadek, Werner Kuich

2022-06-30

In Information and Computation

Abstract

In weighted automata theory, many classical results on formal languages have been extended into a quantitative setting. Here, we investigate weighted context-free languages of infinite words, a generalization of $\omega$-context-free languages (as introduced by Cohen and Gold in 1977) and an extension of weighted context-free languages of finite words (that were already investigated by Chomsky and Schützenberger in 1963). As in the theory of formal grammars, these weighted context-free languages, or $\omega$-algebraic series, can be represented as solutions of mixed $\omega$-algebraic systems of equations and by weighted $\omega$-pushdown automata. In our first main result, we show that (mixed) $\omega$-algebraic systems can be transformed into Greibach normal form. We use the Greibach normal form in our second main result to prove that simple $\omega$-reset pushdown automata recognize all $\omega$-algebraic series. Simple $\omega$-reset automata do not use $\epsilon$-transitions and can change the stack only by at most one symbol. These results generalize fundamental properties of context-free languages to weighted context-free languages.

Continue reading

Posets with interfaces as a model for concurrency

Abstract

We introduce posets with interfaces (iposets) and generalise their standard serial composition to a new gluing composition. In the partial order semantics of concurrency, interfaces and gluing allow modelling events that extend in time and across components. Alternatively, taking a decompositional view, interfaces allow cutting through events, while serial composition may only cut through edges of a poset. We show that iposets under gluing composition form a category, which generalises the monoid of posets under serial composition up to isomorphism. They form a 2-category when a subsumption order and a lax tensor in the form of a non-commutative parallel composition are added, which generalises the interchange monoids used for modelling series-parallel posets. We also study the gluing-parallel hierarchy of iposets, which generalises the standard series-parallel one. The class of gluing-parallel iposets contains that of series-parallel posets and the class of interval orders, which are well studied in concurrency theory, too. We also show that it is strictly contained in the class of all iposets by identifying several forbidden substructures.

Continue reading

Estimation de la fonction de niveau de bruit pour des images couleurs en utilisant la morphologie mathématique

By Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, Didier Verna

2022-06-15

In 28e colloque sur le traitement du signal et des images

Abstract

Le niveau de bruit est une information importante pour certaines applications de traitement d’image telles que la segmentation ou le débruitage. Par le passé, nous avons proposé une méthode pour estimer ce niveau de bruit en s’adaptant au contenu d’une image en niveau de gris et nous avons montré que ses performances dépassent celle de l’état de l’art. Dans cet article, nous proposons une extension de cette méthode aux images couleurs dont les valeurs multivariées, dénuées de relation d’ordre naturelle, impliquent de nouvelles problématiques. Afin de les résoudre, nous utilisons deux outils provenant de la morphologie mathématique : l’arbre des formes multivarié et l’apprentissage de treillis complet. Enfin, nous confirmons les conclusions de nos précédents travaux pour l’estimation de la fonction de niveau de bruit couleur, montrant que l’adaptation au contenu d’une image donne de meilleures performances que l’utilisation de blocs carrés.

Continue reading

Généricité dynamique pour des algorithmes morphologiques

By Baptiste Esteban, Edwin Carlinet, Guillaume Tochon, Didier Verna

2022-06-15

In 28e colloque sur le traitement du signal et des images

Abstract

La généricité est un paradigme puissant dont l’usage permet d’implémenter un unique algorithme et de l’exécuter sur différents types de données. De ce fait, il est très utilisé lors du développement d’une bibliothèque scientifique, notamment en traitement d’images où les algorithmes peuvent s’appliquer à différents types d’images. Le langage C++ est un langage de choix pour ce genre de bibliothèque. Il supporte ce paradigme et ses applications sont performantes compte tenu de sa nature compilée. Néanmoins, contrairement à des langages dynamiques tels que Python ou Julia, ses capacités en matière d’interactivité, utiles lors des étapes de prototypage d’algorithmes, sont limitées en raison de sa nature statique. Nous proposons donc dans cet article une revue des différentes techniques qui permettent d’utiliser à la fois le polymorphisme statique et dynamique, puis nous évaluons le coût du transfert d’information statique vers des informations connues à l’exécution. En particulier, nous montrons que certaines informations d’une image sont plus importantes que d’autres en matière de performance, et que le surcoût dépend aussi de l’algorithme utilisé.

Continue reading

Analyse structurelle de l’influence du bruit sur l’arbre alpha

By Baptiste Esteban, Guillaume Tochon, Edwin Carlinet, Didier Verna

2022-06-14

In 29e colloque sur le traitement du signal et des images

Abstract

L’arbre alpha est une représentation hiérarchique utilisée dans divers traitements d’une image tels que la segmentation ou la simplification. Ces traitements sont néanmoins sensibles au bruit, ce qui nécessite parfois de les adapter. Or, l’influence du bruit sur la structure de l’arbre alpha n’a été que peu étudiée dans la littérature. Ainsi, nous proposons une étude de l’impact du bruit en fonction de son niveau sur la structure de l’arbre. De plus, nous étendons cette étude à la persistance des nœuds de l’arbre en fonction d’une énergie donnée, et nous concluons que certaines fonctionnelles sont plus sensibles au bruit que d’autres.

Continue reading