GenIDA, une base de données participative internationale permettant de mieux connaître l’histoire naturelle et les comorbidités des formes génétiques de troubles neurodéveloppementaux
In Assises de génétique humaine et médicale
In Assises de génétique humaine et médicale
In Remote Sensing
Close-range remote sensing, and more particularly, its acquisition part that is linked to field robotics, is at the crossroads of many scientific and engineering fields. Thus, it takes time for students to acquire the solid foundations needed before practicing on real systems. Therefore, we are interested in a means that allow students without prerequisites to quickly appropriate the fundamentals of this interdisciplinary field. For this, we adapted a haggle game to the close-range remote sensing theme. In this article, we explain the mechanics that serve our educational purposes. We have used it, so far, for four academic years with hundreds of students. The experience was assessed through quality surveys and quizzes to calculate success indicators. The results show that the serious game is well appreciated by the students. It allows them to better structure information and acquire a good global vision of multi-domain acquisition and data processing in close-range remote sensing. The students are also more involved in the rest of the lessons; all of this helps to facilitate their learning of the theoretical parts. Thus, we were able to shorten the time before moving on to real practice by replacing three lesson sessions with one serious game session, with an increase in mastering fundamental skills. The designed serious game can be useful for close-range remote sensing teachers looking for an effective starting lesson. In addition, teachers from other technical fields can draw inspiration from the creation mechanisms described in this article to create their own adapted version. Such a serious game is also a good asset for selecting promising students in a recruitment context.
In Proceedings of the 28th international conference on tools and algorithms for the construction and analysis of systems (TACAS’22)
In 2021, Casares, Colcombet, and Fijalkow introduced the Alternating Cycle Decomposition (ACD) to study properties and transformations of Muller automata. We present the first practical implementation of the ACD in two different tools, Owl and Spot, and adapt it to the framework of Emerson-Lei automata, i.e., $\omega$-automata whose acceptance conditions are defined by Boolean formulas. The ACD provides a transformation of Emerson-Lei automata into parity automata with strong optimality guarantees: the resulting parity automaton is minimal among those automata that can be obtained by duplication of states. Our empirical results show that this transformation is usable in practice. Further, we show how the ACD can generalize many other specialized constructions such as deciding typeness of automata and degeneralization of generalized Büchi automata, providing a framework of practical algorithms for $\omega$-automata.
In Extraction et gestion des connaissances, EGC 2022, blois, france, 24 au 28 janvier 2022
The need for predictive maintenance comes with an increasing number of incidents, where it is imperative to quickly decide which service to contact for corrective actions. Several predictive models have been designed to automate this process, but the efficient models are opaque (say, black boxes). Many approaches have been proposed to locally explain each prediction of such models. However, providing an explanation for every result is not conceivable when it comes to a large number of daily predictions to analyze. In this article we propose a method based on Subgroup Discovery in order to (1) group together objects that share similar explanations and (2) provide a description that characterises each subgroup
In Workshop EGC 2022 DL for NLP
Hate speech and toxic comment detection on social media has proven to be an essential issue for content moderation. This paper displays a comparison between different Transformer models for Hate Speech detection such as Hate BERT, a BERT-based model, RoBERTa and BERTweet which is a RoBERTa based model. These Transformer models are tested on Jibes&Delight 2021 reddit dataset using the same training and testing conditions. Multiple approaches are detailed in this paper considering feature extraction and data augmentation. The paper concludes that our RoBERTa st4-aug model trained with data augmentation outperforms simple RoBERTa and HateBERT models.
In Journal of Machine Learning for Biomedical Imaging (MELBA)
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS.
In European conference on genetic programming (part of EvoStar)
Anticipatory Learning Classifier Systems (ALCS) are rule- based machine learning algorithms that can simultaneously develop a complete representation of their environment and a decision policy based on this representation to solve their learning tasks. This paper intro- duces BEACS (Behavioral Enhanced Anticipatory Classifier System) in order to handle non-deterministic partially observable environments and to allow users to better understand the environmental representations issued by the system. BEACS is an ALCS that enhances and merges Probability-Enhanced Predictions and Behavioral Sequences approaches used in ALCS to handle such environments. The Probability-Enhanced Predictions consist in enabling the anticipation of several states, while the Behavioral Sequences permits the construction of sequences of ac- tions. The capabilities of BEACS have been studied on a thorough bench- mark of 23 mazes and the results show that BEACS can handle different kinds of non-determinism in partially observable environments, while describing completely and more accurately such environments. BEACS thus provides explanatory insights about created decision polices and environmental representations.
In IEEE Access
Since the emergence of the Bitcoin cryptocurrency, the blockchain technology has become the new Internet tool with which researchers claim to be able to solve any existing online problem. From immutable log ledger applications to authorisation systems applications, the current technological consensus implies that most of Internet problems could be effectively solved by deploying some form of blockchain environment. Regardless this ’consensus’, there are decentralised Internet-based applications on which blockchain technology can actually solve several problems and improve the functionality of these applications. The development of these new blockchain-based solutions is grouped into a new paradigm called Blockchain 3.0 and its concepts go far beyond the well-known cryptocurrencies. In this paper, we study the current trends in the application of blockchain on the paradigm of Public Key Infrastructures (PKI). In particular, we focus on how these current trends can guide the exploration of a fully Decentralised Identity System, with blockchain as be part of the core technology.
In International conference on artificial evolution (EA-2022)
In recent years, high-performance models have been introduced based on deep learning; however, these models do not have high interpretability to complement their high efficiency. Rule-based classifiers can be used to obtain explainable artificial intelligence. Rule-based classifiers use a labeled dataset to extract rules that express the relationships between inputs and expected outputs. Although many evolutionary and non-evolutionary algorithms have developed to solve this problem, we hypothesize that rule-based evolutionary algorithms such as the AntMiner family can provide good approximate solutions to problems that cannot be addressed efficiently using other techniques. This study proposes a novel supervised rule-based classifier for binary classification tasks and evaluates the extent to which algorithms in the AntMiner family can address this problem. First, we describe different versions of AntMiner. We then introduce the one-class AntMiner (OCAntMiner) algorithm, which can work with different imbalance ratios. Next, we evaluate these algorithms using specific synthetic datasets based on the AUPRC, AUROC, and MCC evaluation metrics and rank them based on these metrics. The results demonstrate that the OCAntMiner algorithm performs better than other versions of AntMiner in terms of the specified metrics.
In Proceedings of the IAPR international conference on discrete geometry and mathematical morphology (DGMM)
Copyright (c) 2022, LRE; all rights reserved.
Template by Bootstrapious. Ported to Hugo by DevCows.